BIRZEIT UNIVERSITY

Faculty of Engineering and Technology Department of Electrical and Computer Engineering

 Engineering Probability and Statistics ENEE 2307

 Engineering Probability and Statistics ENEE 2307}

Dr. Wael. Hashlamoun, Mr. Nofal. Nofal, Dr. Mohammed. Jubran, Dr. Abdul-Karim Awwad Midterm Exam

Date: Sunday 4/12/2016
Name:

Time: 75 minutes
Student \#:

Opening Remarks:

- This is a 75-minute exam. Calculators are allowed. Books, notes, formula sheets, and other aids are not allowed.
- You are required to show all your work and provide the necessary explanations everywhere to get full credit.

Problem 1 (20 pts):
a. If a multiple-choice test consists of 5 questions, each with 4 possible answers of which only one is correct. Assume a student just randomly guesses (يتحزر) the correct answer to each questions. What is the probability that the student gets all of them wrong?
b. A pair of coins are tossed simultaneously and independently. Each coin has a probability 0.55 to be heads (H). What is the probability that the outcomes of the two coins are different?

Problem 2 (15 pts)

In an experiment to study the relationship of hypertension (الضغط) and smoking habits, the following data are collected:

	Nonsmokers (NS)	Moderate Smokers (MS)	Heavy Smokers (HS)
Hypertension (H)	15%	19%	16%
No-hypertension (NH)	25%	15%	10%

a. What is the probability that a randomly selected person is a Nonsmoker?
b. What is the probability that a randomly selected person is both a moderate smoker and experiences hypertension?
c. If a random person is selected and found to be a heavy smoker, what is the probability that the person is experiencing hypertension?

Problem 3 (16 pts)
The waiting time, in hours, between successive speeders (المتجاوزين للسر عة) spotted by a radar unit is a continuous random variable with cumulative distribution function

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & x<0 \\
1-e^{-8 x} & x \geq 0
\end{array}\right\}
$$

a. Find the probability of waiting less than 12 minutes between successive speeders?
b. What is the average waiting time, in hours, between successive speeders?

Problem 4 (16 pts):
In testing a certain kind of truck tire, it is found that 25% of the trucks fail to complete the test run without a blowout.
a. Find the probability that out of 6 trucks tested, less that two have blowouts.
b. How many of the 6 tested trucks would you expect to have blowouts?

Problem 5 (15 pts)
Suppose that the proportion of colorblind people in a large population is 0.005 . Use the normal approximation to calculate the probability that there will be at most 32 colorblind person in a randomly chosen group of 6000 people.

Problem 6 (18 pts):
Let X be a random variable representing the time (in years) it takes to develop a software. Suppose that X has the following probability density function

$$
f_{X}(x)=\left\{\begin{array}{cc}
k x^{2} & 0 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right\}
$$

a. Find k so that this is a valid probability density function
b. Compute the probability that it takes more than 1 year to develop the software.
c. Find the probability that it will take more than 6 months to develop the software given that it already exceeded 3 months?
Cood Lucto

$$
\begin{aligned}
& 10, a: p(T)=1 / 4, p(F)=3 / 4 \\
& \because(F F F F F)=v(F)^{5}=\left(\frac{3}{4}\right)^{5}=0.2373 \\
& \text { bo } f(H)=c, 55, \quad f(T)=0,45 \\
& x^{D} \quad S=\{H H, H T, T H, T T\} ; \\
& p(\text { Diffient })=P(H T)+P(T H)=2 p(H T)=2(8,55) *(0,45) \\
& =0.495
\end{aligned}
$$

Problem 2

$$
\begin{aligned}
& y_{x}, \quad f(\text { nowismenter })=(0.5)+(0.25)=0.4 \\
& { }_{x}(b, p(M S \cap H)=0.19 \\
& \frac{p(H / H S)}{\gamma}(p(H \cap H S) \quad \% \\
& =\frac{0.16}{(0.16)+6.10}=\frac{0.16}{0.26}=\frac{16}{26}= \\
& =\frac{8}{13}=0.615^{\circ}
\end{aligned}
$$

noblew 3

$$
F_{x}(x)=\left\{\begin{array}{cc}
c & x<c \\
1-e^{-8 x} & x \geqslant 0
\end{array}\right.
$$

a. 治imatial time (ilu hems)

$$
\begin{aligned}
& p\left(x \leqslant \frac{12}{60}\right)=p\left(x \leqslant \frac{1}{5}\right) ; 12 \text { minules } \\
& \quad=F\left(\frac{1}{5}\right)=1-e^{8 / 5}=1-e^{-1.6}
\end{aligned}
$$

b: $E(x)=\frac{1}{\hat{\lambda}}=\frac{1}{8}$ (hr) $=\frac{60}{8}=7.5$ minules
b. $f_{x}(x)=8 e^{-8 x} \quad x \geqslant 0$

$$
\begin{aligned}
& f_{x}(x)=8 e^{-8 x} x \geqslant 0 \\
& E(x)=\int_{0}^{\infty} x\left[8 e^{-8 x}\right] d x=\frac{1}{8} \Rightarrow 7,5 \text { minetes. }
\end{aligned}
$$

problem 4

$$
p=0.25
$$

$$
1-4=0.75
$$

a. $x:$: 0 of trucks thiat fail the test

$$
\begin{aligned}
p(x<z) & =p(x=0)+p(x=1) \\
& =\binom{6}{0} p^{(0)}(1-p)^{6}+\binom{6}{1}(p)^{1}(1-p)^{6-1} \\
& =(0.75)^{6}+6(6.25)(0.75)^{5}
\end{aligned}
$$

b: $E(x)=n p$

$$
=(6)(0.25)=105
$$

Problem y

$$
\begin{aligned}
& p=c ゙ い く ら \\
& n=6000
\end{aligned}
$$

$$
\begin{aligned}
& x \text { : number at icterblind persons }
\end{aligned}
$$

normal approximation

$$
\begin{aligned}
\mu_{x}^{\prime} & =n p=(6000(0.005)=30 \\
a^{2} & =n p(1-p)=6000 * 6.005 \times(1-0.005)=2 \% .85 \\
p(x \leqslant 32) & =\phi\left(\frac{32-30}{\sqrt{2 \% .85}}\right)=\phi(0.366) \\
& =0.64
\end{aligned}
$$

Pickers 6

$$
f_{x}(x)=\left\{\begin{array}{cc}
k x^{2} & \text { os } x \leqslant 2 \\
c & 2
\end{array} \quad=\right.\text { in years }
$$

a

$$
\int_{0}^{2} k x^{2} d x=\left.k \frac{x^{3}}{3}\right|_{0} ^{2}=k \frac{(8)}{3}=1 \Rightarrow x=\frac{3}{8}
$$

b. $f(x>1)=\int_{i}^{2} k x^{2} d x=\left.k \frac{x^{3}}{3}\right|_{1} ^{2}=\frac{3}{8} \cdot \frac{(8-1)}{3}=\frac{7}{8}$
Ci. x : in years

$$
\begin{aligned}
& =\frac{p\left(x>x_{1}\right)}{p\left(x>x_{2}\right)} \\
& x_{1}=\frac{6}{12}=0.5 \text { yen } \\
& x_{2}=3 \text { mouths } \\
& x_{i}=6 \text { mos } \\
& x_{2}=\frac{3}{12}=0.25 \text { er } \\
& =\frac{\int_{0.5}^{2} k x^{2} d x}{\int_{0.25}^{2} k x^{2} d x}=\frac{x^{3} /\left.3\right|_{0.5} ^{2}}{x^{3} /\left.3\right|_{0.25} ^{2}} \\
& =\frac{\left(8-(0.5)^{3}\right)}{\left(8-(0.25)^{3}\right)} \\
& =\frac{(8-0.125)}{(8-0.015615}=\frac{7.875}{7.9843}= \\
& =0.9863
\end{aligned}
$$

